Menu Close

The Latent Variable-Autoregressive Latent Trajectory Model: A General Framework for Longitudinal Data Analysis

Citation

Bianconcini, Silvia & Bollen, Kenneth A. (2018). The Latent Variable-Autoregressive Latent Trajectory Model: A General Framework for Longitudinal Data Analysis. Structural Equation Modeling, 25(5), 791-808. PMCID: PMC6619429

Abstract

In recent years, longitudinal data have become increasingly relevant in many applications, heightening interest in selecting the best longitudinal model to analyze them. Too often, traditional practice rather than substantive theory guides the specific model selected. This opens the possibility that alternative models might better correspond to the data. In this paper, we present a general longitudinal model that we call the Latent Variable-Autoregressive Latent Trajectory (LV-ALT) model that includes most other longitudinal models with continuous outcomes as special cases. It is capable of specializing to most models dictated by theory or prior research while having the capacity to compare them to alternative ones. If there is little guidance on the best model, the LV-ALT provides a way to determine the appropriate empirical match to the data. We present the model, discuss its identification and estimation, and illustrate how the LV-ALT reveals new things about a widely used empirical example.

URL

https://doi.org/10.1080/10705511.2018.1426467

Reference Type

Journal Article

Year Published

2018

Journal Title

Structural Equation Modeling

Author(s)

Bianconcini, Silvia
Bollen, Kenneth A.

PMCID

PMC6619429