Skip to main content

Citation

Wheeler, Matthew W.; Dunson, David B.; Pandalai, Sudha P.; Baker, Brent A.; & Herring, Amy H. (2014). Mechanistic Hierarchical Gaussian Processes. Journal of the American Statistical Association, 109(507), 894-904. PMCID: PMC4273873

Abstract

The statistics literature on functional data analysis focuses primarily on flexible black-box approaches, which are designed to allow individual curves to have essentially any shape while characterizing variability. Such methods typically cannot incorporate mechanistic information, which is commonly expressed in terms of differential equations. Motivated by studies of muscle activation, we propose a nonparametric Bayesian approach that takes into account mechanistic understanding of muscle physiology. A novel class of hierarchical Gaussian processes is defined that favors curves consistent with differential equations defined on motor, damper, spring systems. A Gibbs sampler is proposed to sample from the posterior distribution and applied to a study of rats exposed to noninjurious muscle activation protocols. Although motivated by muscle force data, a parallel approach can be used to include mechanistic information in broad functional data analysis applications.

URL

http://dx.doi.org/10.1080/01621459.2014.899234

Reference Type

Journal Article

Year Published

2014

Journal Title

Journal of the American Statistical Association

Author(s)

Wheeler, Matthew W.
Dunson, David B.
Pandalai, Sudha P.
Baker, Brent A.
Herring, Amy H.

PMCID

PMC4273873